City of Rome Year 2 (CPT Demos 40th Edition)

From wiki.gis.com
Jump to: navigation, search
Capacity Planning Tool TABLE OF CONTENTS 40th Edition
1. System Design Process (CPT Demos) 40th Edition 2. GIS Software Technology (CPT Demos) 40th Edition 3. Software Performance (CPT Demos) 40th Edition
4. Server Software Performance (CPT Demos) 40th Edition 5. GIS Data Administration (CPT Demos) 40th Edition 6. Network Communications (CPT Demos) 40th Edition
7. Platform Performance (CPT Demos) 40th Edition 9a. GIS Product Architecture (CPT Calculator Demos) 40th Edition 9b. GIS Product Architecture (CPT Design Demos) 40th Edition
10. Performance Management (CPT Demos) 40th Edition 11a. City of Rome Year 1 (CPT Demos) 40th Edition 11b. City of Rome Year 2 (CPT Demos 40th Edition)


Arc17CapacityPlanning0701 release

Phase 2 Water Utility Solution

For Phase 2, City of Rome plans to deploy the ArcGIS Water Utility Solution with templates available on the Esri Web site.

Figure A1-11.36 ArcGIS Solutions for Water Utilities.

Figure A1-11.36 shows the ArcGIS Water Solutions template. ArcGIS Solutions include ready-to-use maps and apps to jumpstart your work. Phase 2 leverages ArcGIS Solutions to implement an upgrade of the City of Rome water utility operations.

The ArcGIS Water Solutions include over 46 maps and apps that can be downloaded and used by customers to jumpstart their GIS operations. Solutions include water-specific information products supported by the following applications:

  • ArcGIS Desktop - 11
  • Collector for ArcGIS - 13
  • ArcGIS GeoEvent Server - 4
  • Operations Dashboard for ArcGIS - 4
  • Web AppBuilder for ArcGIS - 8
  • Web Applications - 20

Solutions also include a model organization template for ArcGIS Online and Portal for ArcGIS.

These ArcGIS solutions are samples used for typical Water Delivery, Sewer Collection, and Stormwater Conveyance operations.

Phase 2: City of Rome Water Utility deployment


CPT Workflow Loads Analysis: Water Utility deployment

Figure A1-11.37 Phase 2 Operations and Water Utilities user needs summary.

Figure A1-11.37 shows results of the City of Rome Phase 2 user needs assessment. Results of the Water user needs analysis provides information needed to complete a composite user needs summary for the Phase 2 Operations and Water Utilities deployment.

The Phase 2 deployment will initially leverage the Water Solutions maps and apps.

  • Delivers rapid deployment with COTS maps and apps.
  • Minimizes deployment risk.

Water maps and apps can be expanding to support custom business requirements.

  • System design is based on generic performance targets.
  • Custom Water applications can be deployed in same categories.
  • Water Solutions performance categories support typical Water deployments.


Figure A1-11.38 CPT Calculator is used to complete the workflow loads analysis.

Figure A1-11.38 shows the CPT Calculator being used to generate performance targets for the City of Rome Water Utility deployment. Software technology performance factors are selected for a 2xMedium complexity ArcGIS Desktop Pro 2D workflow using vector tile basemaps and deployed on the Citrix VDI host platform tier.

Workflow recipes used to represent Water Utility operations.

  • AGD wkstn ArcMap 2D V 2Med 100%Dyn 19x10 Feature
  • AGD wkstn Pro 2D V 2Med 40%Dyn 19x10 Feature +$$
  • AGD wkstn ArcMap 2D V Hvy 100%Dyn 19x10 Feature
  • AGD Citrix ArcMap 2D V Hvy 100%Dyn 19x10 ICA
  • AGD Citrix Pro 2D R Hvy 40%Dyn 19x10 ICA
  • AGD Citrix ArcMap 2D V 2Med 100%Dyn 19x10 ICA
  • AGD Citrix Pro 2D R 2Med 40%Dyn 19x10 ICA
  • AGD Citrix ArcMap 2D V Hvy 100%Dyn 19x10 ICA
  • AGS SOAP 2D VP Med 10%Dyn 13x7 Feature
  • AGS REST 2D V Med 40%Dyn 13x7 PNG24 +$$
  • AGS REST 2D V 2Med 40%Dyn 13x7 PNG24 +$$
  • AGS GeoEvent 2D V Med 100%Dyn 13x7 Feature


CPT project workflows: Water Utility deployment

Figure A1-11.39 Project workflows established for the City of Rome Water Utility deployment.

Figure A1-11.39 shows the results of our City of Rome CPT workflow loads analysis. Project workflows are included on the CPT Workflow tab for use in our system design. Project workflows can be established from Standard Workflows located on the Workflow tab, or from Calculator Workflows generated from the CPT Calculator tab.

Project Workflows supporting City of Rome Water Utility deployment.

  • DeskMap2Med_AGD wkstn ArcMap 2D V 2Med 100%Dyn 19x10 Feature
  • DeskPro2Med40%_AGD wkstn Pro 2D VP 2Med 40%Dyn 19x10 Feature +$$
  • DeskGP_AGD wkstn ArcMap 2D V Hvy 100%Dyn 19x10 Feature
  • CitrixMapHvy_AGD Citrix ArcMap 2D V Hvy 100%Dyn 19x10 ICA
  • CitrixProHvy40%_AGD Citrix Pro 2D RP Hvy 40%Dyn 19x10 ICA
  • CitrixMap2Med_AGD Citrix ArcMap 2D V 2Med 100%Dyn 19x10 ICA
  • CitrixPro2Med40%_AGD Citrix Pro 2D RP 2Med 40%Dyn 19x10 ICA
  • CitrixGP_AGD Citrix ArcMap 2D V Hvy 100%Dyn 19x10 ICA
  • MobileMed10%_AGS SOAP 2D VP Med 10%Dyn 13x7 Feature
  • DashMed40%_AGS REST 2D V Med 40%Dyn 13x7 PNG24 +$$
  • WebIn2Med40%_AGS REST 2D V 2Med 40%Dyn 13x7 PNG24 +$$
  • GeoEventMed_AGS GeoEvent 2D V Med 100%Dyn 13x7 Feature

Each organization's solution will be different.

  • The ArcGIS Water Solution templates provide a variety of maps and apps for review and evaluation.
  • Several decisions must be made during the design process before a final representation is collected in the capacity planning tool.
  • The process and discussion leading up to the final design should be documented as a record of decisions made during the design process.
  • Design documentation should clearly define the basis for the final workflow representation.


CPT Design requirements analysis: Water Utility deployment

Figure A1-11.40 (section 1) CPT Design requirements analysis for the Phase 2 City of Rome locations

The City of Rome Design includes local and public internet clients, plus clients from eight (8) remote sites. The CPT requirements analysis will be configured to support all user locations.

Figure A1-11.37 Phase 2 Operations and Water Utilities user needs summary is used as a reference to configure the Design requirements. User workflows and site locations include the Phase 1 ArcGIS Enterprise IOC workflows and the additional Phase 2 Water Utility operations.

Peak concurrent users or throughput rates are entered for each user workflow in columns C and D.

Figure A1-11.40 (section 1) shows results of the City of Rome CPT Design requirements analysis for the first 5 locations.

  • City of Rome City Hall LAN
  • Operations
  • Freeberg
  • Willsberg
  • Perth


Figure A1-11.41 (section 2) CPT Design requirements analysis for the Phase 2 City of Rome locations

Figure A1-11.41 (section 2) shows the results of the City of Rome CPT Design requirements analysis. Following locations are included in this analysis:

  • Wawash
  • Jackson
  • Petersville
  • Rogerton
  • Public Internet clients

While the CPT Design requirements are configured, Excel compares peak site traffic with available bandwidth and completes a network suitability analysis (RED cells identify traffic bottlenecks). Network bandwidth must be updated to support Phase 2 business requirements.

CPT Design network suitability analysis: Water Utility deployment

Figure A1-11.42 (section 1) Network suitability analysis for City of Rome Water Utility deployment.

Data center and remote site bandwidths were identified by the network administration and provided in the City of Rome technical architecture: Water Utility deployment diagram.

While configuring the requirements analysis and selecting the network bandwidth, the CPT Design tab completes the network suitability analysis. Network utilization (column I) shows less than 50 percent capacity for all locations, and display performance (column V) looks good for workflows at all site locations.

Figure A1-11.42 (section 1) shows the results of the network suitability analysis and recommended network bandwidth upgrades. Following locations and network connections are included in this analysis:

  • Data Center LAN = 1000 Mbps (29% peak utilization)
  • Data Center WAN = 310 Mbps (49% peak utilization)
  • Operations = 45 Mbps (47% peak utilization)
  • Freeberg = 45 Mbps (68% peak utilization)
  • Willsberg = 45 Mbps (63% peak utilization)
  • Perth = 12 Mbps (9% peak utilization)


Figure A1-11.43 (Section 2) Network suitability analysis for City of Rome Water Utility deployment.

Figure A1-11.43 (section 2) shows the results of the network suitability analysis and network bandwidth upgrades. Following locations and network connections are included in this analysis:

  • Additional Data Center WAN sites
  • Wawash = 24 Mbps (65% peak utilization)
  • Jackson = 18 Mbps (43% peak utilization)
  • Petersville = 45 Mbps (52% peak utilization)
  • Rogerton = 45 Mbps (52% peak utilization)
  • Data Center Internet clients = 2500 Mbps (47% peak utilization)

Estimated network cost is generated from the network pricing model and shown below the network selections (column H). City of Rome network service charges following the Phase 2 Water Utility deployment is $18,908/month.

CPT Design generic 4-tier platform configuration: Water Utility deployment

Figure A1-11.44 Platform configuration (generic 4-tier virtual server platform architecture) for the City of Rome Water Utility deployment.

Figure A1-11.44 shows how the CPT Design tab was configured for the Phase 2 generic 4-tier virtual server platform architecture. The GeoEvent server is configured on a dedicated physical tier to minimize deployment risk.

The City of Rome Figure 11.43 phase 2 platform architecture diagram is used to identify the minimum number of server machines for each platform tier. A minimum of two virtual machines will be deployed for each virtual server to support high-availability requirements.

Generic 4-tier platform architecture selection

  • WTS platform tier. ArcGIS Desktop deployed on the Citrix virtual host platform tier, with VDI and 6 core/node for the virtual desktop configuration (column I).
  • GeoEvent platform tier. GeoEvent server role is configured on a dedicated physical server tier.
  • Web platform tier. Supports separate internal and external Web and Portal sites deployed on the Server virtual host platform tier (column I selection).
  • GIS platform tier. Supports separate internal and external ArcGIS Server publishing and hosting sites deployed on the Server virtual host platform tier (column I selection).
  • DBMS platform tier. Supports production and publication geodatabase servers, internal and public relational data stores, and public geospatial big data store all deployed on the Server virtual host platform tier (column I selection).
Best practice: The generic 4-tier generic platform virtual server configuration can be used to generate a proper virtual host platform recommendation.
Warning: Accurate number of machines (fixed nodes) on each virtual tier is needed to generate proper virtual host platform memory recommendations.'


CPT Design generic 4-tier software configuration: Water Utility deployment

Figure A1-11.45 (section 1) Generic 4-tier virtual server software configuration supporting City of Rome Water Utility deployment.

For the generic virtual server platform tier configuration, the software assignment for each software component can be assigned from the top default configuration (LAN row, columns J through Q). All virtual server workflow software components are selected as default, assigned from the LAN default selection.

The generic 4-tier software configuration will assign workflow processing loads to the proper virtual server tier, and those loads will be sent to the selected virtual host platform tier. CPT Design platform sizing analysis will select the proper virtual host platform processor solution, while the proper number of machines on each virtual tier is needed to generate the final memory recommendations.

Figure A1-11.45 (section 1) shows the CPT Design generic 4-tier virtual server software configuration for the City of Rome Water Utility deployment. Following sites and workflows are included in this analysis:

  • Data Center LAN = 11 local workflows
  • Data Center WAN sites
  • Operations = 8 workflows
  • Freeberg = 4 workflows
  • Willsberg = 4 workflows
  • Perth = 4 workflows


Figure A1-11.46 (section 2) Generic 4-tier virtual server software configuration supporting City of Rome Water Utility deployment.

Figure A1-11.46 (section 1) shows the CPT Design generic 4-tier virtual server software configuration for the City of Rome Water Utility deployment. GeoEvent Server role will be deployed on a separate dedicated physical server tier to minimize deployment risk. Following sites and workflows are included in this analysis:

  • Data Center WAN sites
  • Wawash = 4 workflows
  • Jackson = 4 workflows
  • Petersville = 4 workflows
  • Rogerton = 4 workflows
  • Data Center Public Internet clients = 6 web service workflows and GeoEvent ingestion workflow transactions.

GeoEvent workflow SOC load is assigned to the GeoEvent platform tier. The GeoSpatial data store is part of the virtual DBMS platform tier.

Best practice: The generic 4-tier generic platform configuration simplifies software configuration.


CPT Design generic 4-tier platform solution: Water Utility deployment

Figure A1-11.47 Platform solution for City of Rome Water Utility deployment.

Figure A1-11.47 shows the recommended platform solution for City of Rome Water Utility deployment.

The following steps should be followed to configure the ArcGIS Desktop VDI tier and the supporting Citrix virtual host platform.

  • Select VDI (virtual desktop infrastructure) with 6 core/node for WTS tier virtualization architecture (column I).
  • Select new Xeon E5-2690v4 28 core (2 chip) 2600 MHz Citrix virtual host platform (Column B). WTS VDI platform tier must be same selection.
Best practice: Xeon E5-2690v4 28 core (2 chip) 2600 MHz with NVIDIA Tesla GRID video card is the recommended VDI Host platform for 25 concurrent ArcGIS Pro clients.
  • Set WTS tier fixed nodes to 200 (column H). Total remote ArcGIS Desktop clients is 209, and clients will use a mix of ArcMap and ArcGIS Pro applications. ArcGIS Pro loads are significantly heavier than ArcMap due to more efficient project workflow and concurrent batch processing jobs. City estimates peak load would be represented by 200 concurrent ArcGIS Pro users.
  • With WTS fixed nodes > 0 and no batch jobs, column AF identifies required Citrix virtual host platforms (8 host platforms). CPT Design high availability configuration is N+1; City decides 8 host servers supporting 200 ArcGIS Pro clients (25 virtual desktops per node) is adequate to meet their high availability requirements.
  • Set Citrix virtual host tier fixed nodes = 8. Cost of the NVIDIA Tesla video cards with 25 virtual desktops/node for the Citrix virtual host tier is shown in column AF just below the Citrix virtual host tier ($160,000).
  • Estimated additional ArcGIS Pro concurrent batch jobs supported with the current configuration is identified in the Citrix virtual host tier in column AF (top cell - 103 concurrent batch jobs).

Once the CPT Design tab is configured properly, and workflow software components assigned to the appropriate platform tier, excel completes the system architecture design analysis for the configured business state.

Citrix virtual host tier (Up to 209 concurrent ArcGIS Desktop (ArcMap and ArcGIS Pro) virtual desktops, with no more than 200 concurrent desktops using ArcGIS Pro)

  • Eight (8) Xeon E5-2690v4 28 core (2 chip) 2600 MHz platforms
  • 553 GB RAM recommended memory per server node (200 concurrent ArcGIS virtual desktops).
  • 7.5 percent utilization during peak loads (no batch jobs - 200 concurrent ArcGIS virtual desktops)
  • Supports up to 103 concurrent batch jobs

Server virtual host tier (estimate 27 2-core virtual server machines)

  • Two (2) Xeon E5-2667v4 16 core (2 chip) 3200 MHz platforms
  • 441 GB RAM recommended memory per server node.
  • 38.5 percent utilization during peak loads.
Warning: Accurate number of machines (fixed nodes) on each virtual tier is needed to generate proper virtual host platform memory recommendations.'

CPT Design detailed 15-tier platform configuration: Water Utility deployment

City of Rome is interested in evaluating a full virtual server platform tier configuration to validate platform sizing.

Detailed CPT Design process

  • CPT Design platform configuration. Configure separate virtual platform tier for each server platform.
  • CPT Design software configuration. Assign software configuration to specific virtual platform tier.
  • CPT Design platform solution. Assign each virtual platform tier to the appropriate host virtual server platform tier.

CPT Design detailed 15-tier platform configuration: Water Utility deployment

Figure A1-11.48 (section 1) Platform configuration (detailed 14-tier virtual server platform architecture) for the City of Rome Water Utility deployment.

The City of Rome Figure 11.43 phase 2 platform architecture diagram is used to identify the minimum number of server machines for each platform tier. A minimum of two virtual machines will be deployed for each virtual server to support high-availability requirements. GeoSpatial big data store requires a minimum of 3 virtual machines.

Figure A1-11.48 (section 1) shows how the CPT Design tab was configured for the Phase 2 detailed 14-tier virtual server platform architecture. Section 1 includes the following platform tier.

  • WTS platform tier. ArcGIS Desktop deployed on the Citrix virtual host platform tier, with VDI and 6 core/node for the virtual desktop configuration (column I).

Following virtual server tier are deployed on the Server virtual host platform tier.

  • Webin platform tier. Supports internal web server machines.
  • WebPub platform tier. Supports public web server machines.
  • Portin platform tier. Supports internal Portal for ArcGIS Server site machines.
  • PortPub platform tier. Supports public Portal for ArcGIS server site machines.
  • GISIn platform tier. Supports internal GIS Server site machines.
  • GISPub platform tier. Supports public GIS Server site machines.
  • GISHostIn platform tier. Supports internal GIS Server hosting site machines.
  • GISHostPub platform tier. Supports public GIS Server hosting site machines.
Figure A1-11.49 (section 2) Platform configuration (detailed 14-tier virtual server platform architecture) for the City of Rome Water Utility deployment.

Figure A1-11.49 (section 2) shows how the CPT Design tab was configured for the Phase 2 detailed 14-tier virtual server platform architecture. Section 2 includes the following platform tier.

  • GeoEvent platform tier. GeoEvent server role is configured on a dedicated physical server tier to minimize deployment risk.

Following virtual server tier are deployed on the Server virtual host platform tier.

  • ProdGDB platform tier. Production Geodatabase server machines.
  • PubGDB platform tier. Publication Geodatabase server machines.
  • DSRelIn platform tier. Internal relational data store machines.
  • DSRelout platform tier. Public relational data store machines.
  • DSSpTemp platform tier. GeoSpatial big data store machines.

Virtual server host platform tier.

  • Citrix virtual host tier. ArcGIS Desktop virtual desktop infrastructure (VDI) tier.
  • Server virtual host tier. Host the remaining Web, Portal, GIS, DBMS and ArcGIS Data Store virtual server machines.


CPT Design detailed 15-tier software configuration: Water Utility deployment

Figure A1-11.50 (section 1) Detailed 15-tier virtual server software configuration supporting City of Rome Water Utility deployment.

For the detailed 15-tier platform configuration, the software configuration for each software component must be assigned to the proper installed platform tier. The default configuration can be used for the most common platform configurations.

The detailed 15-tier software configuration will assign workflow processing loads to the proper virtual server tier, and those loads will be sent to the selected virtual host platform tier. CPT Design platform sizing analysis will select the proper virtual host platform processor solution, and will generate the proper number of machines for each virtual tier based on the installed configuration.

Figure A1-11.50 (section 1) shows the CPT Design detailed 15-tier software configuration for the City of Rome Water Utility deployment.

Section 1 includes the following workflow software configurations:

Default row 5
  • Select Client, WTS for Citrix, Webin for Web, Portin for Portal, GISin for SOC, and PubGDB for DBMS.
Data Center LAN workflows
  • BatchAdmin: select ProdGDB for DBMS.
  • DeskProMed40%: select DSRelin for DBMS.
  • DeskMapHvy: select ProdGDB for DBMS.
  • DeskMap2Med: select ProdGDB for DBMS.
  • DeskGP: select ProdGDB for DBMS.
  • PortalFsvc: select GISHostIn for SOC and DSRelin for DBMS.
Operations WAN workflows
  • CitrixMap2Med: select ProdGDB for DBMS.
  • CitrixGP: select ProdGDB for DBMS.
  • PortalFsvc: select GISHostIn for SOC and DSRelin for DBMS.
Freeberg WAN workflows
  • PortalFsvc: select GISHostIn for SOC and DSRelin for DBMS.
Willsberg WAN workflows
  • PortalFsvc: select GISHostIn for SOC and DSRelin for DBMS.
Perth WAN workflows
  • PortalFsvc: select GISHostIn for SOC and DSRelin for DBMS.


Figure A1-11.51 (section 2) Generic 4-tier virtual server software configuration supporting City of Rome Water Utility deployment.

Figure A1-11.51 (section 2) shows the CPT Design detailed 15-tier software configuration for the City of Rome Water Utility deployment.

Section 2 includes the following workflow software configurations:

Wawash WAN workflows
  • PortalFsvc: select GISHostIn for SOC and DSRelin for DBMS.
Jackson WAN workflows
  • PortalFsvc: select GISHostIn for SOC and DSRelin for DBMS.
Petersville WAN workflows
  • PortalFsvc: select GISHostIn for SOC and DSRelin for DBMS.
Rogerton WAN workflows
  • PortalFsvc: select GISHostIn for SOC and DSRelin for DBMS.
Public Internet workflows
  • WebPubMed40% select WebPub for Web, PortPub for Portal, GISPub for SOC.
  • PortalFsvc: select GISHostIn for SOC and DSRelin for DBMS.
  • WebInHvy40$: select WebPub for Web, PortPub for Portal, GISPub for SOC.
  • WebIn2Med40%: select WebPub for Web, PortPub for Portal, GISPub for SOC.
  • MobileMed10%: select WebPub for Web, PortPub for Portal, GISPub for SOC.
  • DashMed40%: select WebPub for Web, PortPub for Portal, GISPub for SOC.
  • GeoEventMed: select GeoEvent for SOC,DSSpTemp for DBMS.
Warning: Detailed software configuration requires careful attention to details.


CPT Design detailed 15-tier platform solution: Water Utility deployment

Figure A1-11.52 Platform solution for City of Rome Water Utility deployment.

Figure A1-11.52 shows section 1 of the recommended platform solution for City of Rome Water Utility deployment.

Section 1 includes the following platform tier.

  • WTS Platform tier: 200 6 core/node virtual desktops on Citrix virtual Host tier.
  • Webin Platform tier: Two (2) 2 core/node virtual servers on Server virtual host tier.
  • WebPub Platform tier: Two (2) 2 core/node virtual servers on Server virtual host tier.
  • PortIn Platform tier: Two (2) 2 core/node virtual servers on Server virtual host tier.
  • PortPub Platform tier: Two (2) 2 core/node virtual servers on Server virtual host tier.
  • GISIn Platform tier: Two (2) 2 core/node virtual servers on Server virtual host tier.
  • GISPub Platform tier: Two (2) 2 core/node virtual servers on Server virtual host tier.
  • GISHostIn Platform tier: Two (2) 2 core/node virtual servers on Server virtual host tier.
  • GISHostPub Platform tier: Two (2) 2 core/node virtual servers on Server virtual host tier.

The following steps should be followed to configure the ArcGIS Desktop VDI (WTS) tier and the supporting Citrix virtual host tier.

  • Select VDI (virtual desktop infrastructure) with 6 core/node for WTS tier virtualization architecture (column I).
  • Select new Xeon E5-2690v4 28 core (2 chip) 2600 MHz Citrix virtual host platform (Column B). WTS VDI platform tier must be same selection.
Best practice: Xeon E5-2690v4 28 core (2 chip) 2600 MHz with NVIDIA Tesla GRID video card is the recommended VDI Host platform for 25 concurrent ArcGIS Pro clients.
  • Set WTS tier fixed nodes to 200 (column H). Total remote ArcGIS Desktop clients is 209, and clients will use a mix of ArcMap and ArcGIS Pro applications. ArcGIS Pro loads are significantly heavier than ArcMap due to more efficient project workflow and concurrent batch processing jobs. City estimates peak load would be represented by 200 concurrent ArcGIS Pro users.
  • With WTS fixed nodes > 0 and no batch jobs, column AF identifies required Citrix virtual host platforms (8 host platforms). CPT Design high availability configuration is N+1; City decides 8 host servers supporting 200 ArcGIS Pro clients (25 virtual desktops per node) is adequate to meet their high availability requirements.
  • Set Citrix virtual host tier (section 2) fixed nodes = 8. Cost of the NVIDIA Tesla video cards with 25 virtual desktops/node for the Citrix virtual host tier is shown in column AF just below the Citrix virtual host tier ($160,000).
  • Estimated additional ArcGIS Pro concurrent batch jobs supported with the current configuration is identified in the Citrix virtual host tier in column AF (top cell - 103 concurrent batch jobs).

Once the CPT Design tab is configured properly, and workflow software components assigned to the appropriate platform tier, excel completes the system architecture design analysis for the configured business state.

Figure A1-11.53 Platform solution for City of Rome Water Utility deployment.

Figure A1-11.53 shows section 2 of the recommended platform solution for City of Rome Water Utility deployment.

Section 1 includes the following platform tier.

Physical platform tier
  • GeoEvent Platform tier: Two (2) Xeon E5-2637v4 4 core (1 chip) 3500 MHz Platforms, 16 GB Memory/node
Virtual platform tier
  • ProdGDB Platform tier: Two (2) 2 core/node virtual servers on Server virtual host tier.
  • PubGDB Platform tier: Two (2) 2 core/node virtual servers on Server virtual host tier.
  • DSRelin Platform tier: Two (2) 2 core/node virtual servers on Server virtual host tier.
  • DSRelout Platform tier: Two (2) 2 core/node virtual servers on Server virtual host tier.
  • DSSpTemp Platform tier: Three (3) 2 core/node virtual servers on Server virtual host tier.
Virtual Server Host Platforms

Citrix virtual host tier (Up to 209 concurrent ArcGIS Desktop (ArcMap and ArcGIS Pro) virtual desktops, with no more than 200 concurrent desktops using ArcGIS Pro)

  • Eight (8) Xeon E5-2690v4 28 core (2 chip) 2600 MHz platforms
  • 553 GB RAM recommended memory per server node (200 concurrent ArcGIS virtual desktops)
  • 7.5 percent utilization during peak loads (no batch jobs - 200 concurrent ArcGIS virtual desktops)
  • Supports up to 103 concurrent batch jobs

Server virtual host tier (27 2-core virtual server machines)

  • Two (2) Xeon E5-2667v4 16 core (2 chip) 3200 MHz platforms
  • 441 GB RAM recommended memory per server node.
  • 38.5 percent utilization during peak loads.

CPT Design final generic 4-tier platform solution: Water Utility deployment final design

Figure A1-11.54 Final platform solution for City of Rome Water Utility deployment.

Figure A1-11.54 shows the final recommended platform solution for City of Rome Water Utility deployment.

Final solution is back to a 4-tier virtual architecture with GeoEvent on a physical tier.

Virtual platform tier
  • WTS Platform tier: 200 6 core/node virtual desktops on Citrix virtual Host tier.
Physical platform tier
  • GeoEvent Platform tier: Two (2) Xeon E5-2637v4 4 core (1 chip) 3500 MHz Platforms, 16 GB Memory/node
Virtual platform tier
  • Web Platform tier: Eight (8) 2 core/node virtual servers.
  • GIS Platform tier: Eight (8) 2 core/node virtual servers.
  • DBMS Platform tier: Eleven (11) 2 core/node virtual servers.
Virtual Server Host Platforms

Citrix virtual host tier (Up to 209 concurrent ArcGIS Desktop (ArcMap and ArcGIS Pro) virtual desktops, with no more than 200 concurrent desktops using ArcGIS Pro)

  • Eight (8) Xeon E5-2690v4 28 core (2 chip) 2600 MHz platforms
  • 553 GB RAM recommended memory per server node (200 concurrent ArcGIS virtual desktops).
  • 7.5 percent utilization during peak loads (no batch jobs - 200 concurrent ArcGIS virtual desktops)
  • Supports up to 103 concurrent batch jobs

Server virtual host tier (estimate 27 2-core virtual server machines)

  • Two (2) Xeon E5-2667v4 16 core (2 chip) 3200 MHz platforms
  • 441 GB RAM recommended memory per server node.
  • 38.5 percent utilization during peak loads.

Notice the final Water Utility host platform solutions using a generic 4-tier architecture provides the same results as the detailed solution.

Best practice: CPT can be used to configure very complex server configurations using a generic virtual server tier architecture.'
Warning: Accurate number of machines (fixed nodes) on each virtual tier is needed to generate proper virtual host platform memory recommendations.'

CPT Capacity Planning videos

Capacity Planning Tool TABLE OF CONTENTS 40th Edition
1. System Design Process (CPT Demos) 40th Edition 2. GIS Software Technology (CPT Demos) 40th Edition 3. Software Performance (CPT Demos) 40th Edition
4. Server Software Performance (CPT Demos) 40th Edition 5. GIS Data Administration (CPT Demos) 40th Edition 6. Network Communications (CPT Demos) 40th Edition
7. Platform Performance (CPT Demos) 40th Edition 9a. GIS Product Architecture (CPT Calculator Demos) 40th Edition 9b. GIS Product Architecture (CPT Design Demos) 40th Edition
10. Performance Management (CPT Demos) 40th Edition 11a. City of Rome Year 1 (CPT Demos) 40th Edition 11b. City of Rome Year 2 (CPT Demos 40th Edition)


Page Footer
Specific license terms for this content
System Design Strategies 26th edition - An Esri ® Technical Reference Document • 2009 (final PDF release)