Island biogeography

Jump to: navigation, search

Island biogeography is a field within biogeography that attempts to establish and explain the factors that affect the species richness of natural communities. The theory was developed to explain species richness of actual islands. It has since been extended to mountains surrounded by deserts, lakes surrounded by dry land, forest fragments surrounded by human-altered landscapes. Now it is used in reference to any ecosystem surrounded by unlike ecosystems. The field was started in the 1960s by the ecologists Robert MacArthur and E.O. Wilson, who coined the term theory of island biogeography, as this theory attempted to predict the number of species that would exist on a newly created island.

For biogeographical purposes, an "island" is any area of suitable habitat surrounded by an expanse of unsuitable habitat. While this may be a traditional island—a mass of land surrounded by water—the term may also be applied to many untraditional "islands", such as the peaks of mountains, isolated springs in the desert, or expanses of grassland surrounded by highways or housing tracts. Additionally, what is an island for one organism may not be an island for another: some organisms located on mountaintops may also be found in the valleys, while others may be restricted to the peaks.


The theory of island biogeography proposes that the number of species found on an undisturbed island is determined by: immigration, emigration and extinction.

Immigration is affected by the distance of an island from a source of colonists. Usually this source is the mainland, but it can also be other islands. Islands that are more isolated are less likely to receive immigrants than islands that are less isolated.

The rate of extinction once a species manages to colonize an island is affected by island size. Larger islands contain larger habitat areas and opportunities for more different varieties of habitat. Larger habitat size reduces the probability of extinction due to chance events. More habitat types increases the number of species that will be successful after immigration.

Over time, the countervailing forces of extinction and immigration result in an equilibrium level of species richness.

The theory of island biogeography was experimentally tested by E. O. Wilson and his student Daniel Simberloff in the mangrove islands in the Florida Keys.[1] Species richness on several small mangroves islands were surveyed. The islands were fumigated with methyl bromide to clear their arthropod communities. Following fumigation the immigration of species onto the islands was monitored. Within a year the islands had been recolonised. Islands closer to the mainland recovered faster and larger islands had more species at equilibrium as predicted by the Theory of Island Biogeography.

Research conducted at the rainforest research station on Barro Colorado Island has yielded a large number of publications concerning the ecological changes following the formation of islands, such as the local extinction of large predators and the subsequent changes in prey populations.[citation needed]

Influencing factors

  • Degree of isolation (distance to nearest neighbour, and mainland)
  • Length of isolation (time)
  • Size of island (larger area usually facilitates greater diversity)
  • Climate (tropical versus arctic, humid versus arid, etc.)
  • Location relative to ocean currents (influences nutrient, fish, bird, and seed flow patterns)
  • Initial plant and animal composition if previously attached to a larger land mass (e.g., marsupials, primates, etc.)
  • The species composition of earliest arrivals (if always isolated)
  • Serendipity (the impacts of chance arrivals)
  • Human activity

Applications in conservation biology

Within a few years of the publishing of the theory its application to the field of conservation biology had been realised and was being vigorously debated in ecological circles[citation needed]. The realisation that reserves and national parks formed islands inside human-altered landscapes (habitat fragmentation), and that these reserves could lose species as they 'relaxed towards equilibrium' (that is they would lose species as they achieved their new equilibrium number, known as ecosystem decay) caused a great deal of concern. This is particularly true when conserving larger species which tend to have larger ranges. A study by William Newmark, published in the journal Nature and reported in the New York Times, showed a strong correlation between the size of a protected U.S. National Park and the number of species of mammals.

This led to the debate known as single large or several small (SLOSS), described by writer David Quammen in The Song Of The Dodo as "ecology's own genteel version of trench warfare". In the years after the publication of Wilson and Simberloff's papers ecologists had found more examples of the species-area relationship, and conservation planning was taking the view that the one large reserve could hold more species than several smaller reserves, and that larger reserves should be the norm in reserve design. This view was in particular championed by Jared Diamond. This led to concern by other ecologists, including Dan Simberloff, who considered this to be an unproven over-simplification that would damage conservation efforts. Habitat diversity was as or more important than size in determining the number of species protected.

Island biogeography theory also led to the development of habitat corridors as a conservation tool to increase connectivity between habitat islands. Habitat corridors can increase the movement of species between parks and reserves and therefore increase the number of species that can be supported.

In species diversity, island biogeography most describes allopatric speciation. Allopatric speciation is where new gene pools arise out of natural selection in isolated gene pools. Island Biogeography is also useful in considering sympatric speciation, the idea of different species arising from one ancestral species in the same area. Interbreeding between the two differently adapted species would prevent speciation, but in some species, sympatric speciation appears to have occurred.

See also

  • Disturbance
  • Patch dynamics


  1. Simberloff, D. and Wilson, E.O. 1969. Experimental Zoogeography of islands - colonization of empty islands. Ecology 50: 278-296
  • MacArthur, R. H. and Wilson, E. O. 1967. The Theory of Island Biogeography. Princeton, N.J.: Princeton University Press.
  • Newmark, W. D., A land-bridge island perspective on mammalian extinctions in western North American parks, Nature, 325, 430 - 432 (29 January 1987)
  • David Quammen. 1997. The Song of the Dodo: Island Biogeography in an Age of Extinctions. Scribner. ISBN 0-684-82712-3
  • Allan A. Schoenherr, C. Robert Feldmeth, Michael J. Emerson. 2003. Natural History of the Islands of California. University of California Press.