# Spider diagram

A spider diagram adds existential points to an Euler or a Venn diagram. The points indicate the existence of an attribute described by the intersection of contours in the Euler diagram. These points may be joined together forming a shape like a spider. These represent an OR condition, also known as a logical disjunction.

Euler diagram In the image shown, the following conjunctions are apparent from the Euler diagram. $A \land B$ $B \land C$ $F \land E$ $G \land F$

In the universe of discourse defined by this Euler diagram, in addition to the conjunctions specified above, all possible sets from A through B and D through G are available separately. The set C is only available as a subset of B. Often, in complicated diagrams, singleton sets and/or conjunctions may be obscured by other set combinations.

The two spiders in the example correspond to the following logical expressions:

Red spider: $(F \land E) \lor (G) \lor (D)$

Blue spider: $(A) \lor (C \land B) \lor (F)$